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Abstract: We use the non-Abelian DBI action to study the dynamics of N coincident

Dp-branes in an arbitrary curved background, with the presence of a homogenous world-

volume electric field. The solutions are natural extensions of those without electric fields,

and imply that the spheres will collapse toward zero size. We then go on to consider the

D1−D3 intersection in a curved background and find various dualities and automorphisms

of the general equations of motion. It is possible to map the dynamical equation of motion

to the static one via Wick rotation, however the additional spatial dependence of the metric

prevents this mapping from being invertible. Instead we find that a double Wick rotation

leaves the static equation invariant. This is very different from the behaviour in Minkowski

space. We go on to construct the most general static fuzzy funnel solutions for an arbitrary

metric either by solving the static equations of motion, or by finding configurations which

minimise the energy. As a consistency check we construct the Abelian D3-brane world-

volume theory in the same generic background and find solutions consistent with energy

minimisation. In the NS5-brane background we find time dependent solutions to the

equations of motion, representing a time dependent fuzzy funnel. These solutions match

those obtained from the D-string picture to leading order suggesting that the action in

the large N limit does not need corrections. We conclude by generalising our solutions to

higher dimensional fuzzy funnels.
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1. Introduction

The issue of time dependence in string theory has been discussed in a number of recent

works, from the boundary CFT approach and the effective D-brane action [1, 10]. The

most recent efforts have been related to the dynamics of branes in curved backgrounds

with classical supergravity solutions, and shown that there is a similarity between the

brane motion and condensation of open string tachyons. The hope is that understanding

of one of these pictures will lead to better understanding of the other. We would also

hope to learn more about the nature of branes with regard to cosmology, which has been

recently dealt with in [2, 21, 22] The obvious objection to this is the fact that branes in

the literature are assumed to be rigid hyperplanes in type II string theory. Whilst this is

acceptable from the viewpoint of perturbative string theory, spatial fluctuations of these

moving branes should be taken into account.

A further thing to note is that almost all of these works have dealt with solitary

branes moving in some background, where we are assuming that there has been some Higgs
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mechanism employed to separate the branes. Thus a more general approach would be to

consider the dynamics of coincident branes [25], where the massless modes of the theory

help define a U(N) gauge symmetry via the use of the non-Abelian DBI effective action [4].

This is more useful from the viewpoint of cosmology and standard model building, as well

as trying to understand aspects of black holes physics [23, 24].

The key to the non-Abelian DBI relies in the fact that we must employ non-commuta-

tive geometry, replacing the scalar fields (which in the Abelian theory are singlets) by

N × N adjoint valued matrices. At high energies near the Planck scale we may find that

our intuitive ideas about smooth geometries need to be revised, therefore it is worthwhile

to fully understand the nature of non-commutative physics. Much of the work with the

effective non-Abelian DBI has dealt with brane polarisation [4] and intersections [5, 6],

however most of the literature here has also only been concerned with flat backgrounds

- and although it is expected that many of the dualities and brane configurations will

hold in curved space, this has not yet been conclusively proven. Furthermore the flux

compactification scenario developed in [30] emphasises the need for more understanding

of systems in warped backgrounds. Recently there has been suggestion that the non-

Abelian action needs to be corrected when dealing with curved backgrounds [29]. However

it was shown in [17 – 19] that these corrections do not need to be included when taking

the large N limit. This was demonstrated using the gravitational Myers effect [23], where

the equations of motion arising from the Abelian and non-Abelian theories are identical to

leading order in 1/N . We should bear in mind that this may have been a special case, so

investigating other non-commutative brane configurations in curved space should further

enhance our knowledge of the symmetrised trace. It may well turn out to be the case that

these corrections turn out to be important when taking the finite N limit. Recently [8]

have proposed a complete expansion of the symmetrised trace, which potentially opens up

new avenues of investigation.

In this paper we wish to examine some of these issues by extending the research begun

in [5, 14, 19] to consider the dynamics of coincident Dp-branes in an arbitrary curved

background. We will consider the case where we turn on a homogenous electric field on

each of the world-volumes to see how this affects the dynamics, and the leading order

corrections from the application of the symmetrised trace. The main thrust of this work,

however, will concern the brane intersection problem of D1-branes with a solitary D3-

brane in an arbitrary curved background. It is well known that coincident D-strings in flat

space ’expand’ along their world-volume direction to create an object known as a fuzzy

funnel [5 – 7, 26]. The radius diverges at some point and the configuration ’blows up’ to form

a D3-brane, provided we use the SU(2) ansatz for the transverse scalar fields. This is known

as the microscopic description of the brane polarisation phenomenon. This funnel solution

can be checked from the Abelian, macroscopic, side by considering BIon solutions [27] on

the world-volume. We wish to know if these funnel solutions can be constructed in general

curved backgrounds, and also whether we can verify the dual picture. This would indeed

show that any corrections to the action do not play a role in the large N limit. Furthermore

we expect these funnel solutions to be non-BPS configurations, and so it is of interest to

learn whether the energy will pick up corrections from the symmetrised trace. In flat space
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the funnel solution for the fuzzy S2 is BPS and it was shown [9] that the configuration

does not pick up corrections from the symmetrised trace 1. Thus one may expect that the

BPS condition is protected from any 1/N corrections. We wish to show that this is not

quite correct and that it is minimal energy configurations which are protected from such

corrections, which may not necessarily be BPS, at least for the D1−D3 intersection. The

explanation of the flat space result is that the BPS condition coincides with the minimum

energy condition.

Another related issue has been the automorphisms of the equations of motion. In [9]

it was shown that there are dualities between fuzzy funnel solutions and brane dynamics

in flat space. The more general case of a curved background would appear to impose

additional constraints on the theory which breaks at least some part of this duality, just as

in the case of adding world-volume electric fields [11]. The automorphisms of the equations

are related to large/small dualities where r → 1/r in flat space, however we may expect

this not to hold in general curved backgrounds.

We begin with a review of the non-Abelian DBI in a generic curved background,

and make some general comments about the time dependent collapse of a fuzzy sphere

with electric fields on the coincident Dp-branes. We then switch our attention to brane

intersections in the same background, focusing initially on the D1 − D3 intersection. We

try to construct the most general funnel solution consistent with the equations of motion

and the minimisation of energy, before specialising to a few special brane backgrounds. We

comment on the automorphisms of the equations of motion and the dualities present in

curved space before going on to construct the dual Abelian theory of a D3-brane with non

trivial magnetic flux on the world-volume. We show that the solutions on the Abelian side

are the same as those on the non-Abelian side. We close with an extension of the work to

higher dimensional funnel solutions before closing with some remarks and possible future

directions

2. Dynamics of non-abelian DBI

In this section we wish to consider the dynamics of N coincident Dp-branes in a curved

background, when there is a homogenous electric field on the world-volume of each of the

N branes. We will begin with type II string theory in ten dimensions, and assume that

there is a curved background generated by some source with M units of flux. The only

constraint we will impose on the form of the background metric is that it is diagonal, with

a symmetry group given by SO(1, q) × SO(9 − q)

ds2 = −g00dt2 + gxxdxadxbδab + gzzdzidzjδij (2.1)

where a, b run over the q worldvolume directions and i, j are transverse directions to the

source. This background could obviously be generated by a stack of coincident branes, or

something more exotic.

Into this background we wish to introduce our N coincident Dp-branes, which will

have an effective action given by the Non-Abelian extension of the simple DBI [4]. The

1Note that the funnel solutions for higher dimensional intersections in flat space are not BPS.
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key aspect of this is that we want to consider these branes as probes of the background

geometry, and must therefore ensure that the number of coincident branes is less than

the charge from the background source. The bosonic part of the action can be written as

follows

S = −τp

∫

dp+1ζSTr

(

e−φ
√

−det(P[Eab + Eai(Q−1 − δ)ijEjb + λFab])
√

detQi
j

)

, (2.2)

where, as usual, P denotes the pullback of the bulk spacetime tensors to each of the brane

world-volumes. In addition we have the following definition for the induced metric Eµν =

Gµν + Bµν , where Gµν , Bµν are the bulk metric and Kalb-Ramond two form respectively.

However for the remainder of this note we will set B = 0 for simplicity. The open string

couplings on the world-volume are controlled by the inverse of the F-string tension as

λ = 2πα′, where α′ = l2s is the slope of the Regge trajectory and equal to the square

of the string length. The last term in the action is often referred to as the potential, as

in the non-relativistic limit we recover a dimensionally reduced Yang-Mills theory. The

full expression for the matrix Q is given by Qi
j = δi

j + iλ[φi, φk]Ekj , where the φi are the

transverse coordinates to the p-branes world-volume.

Recall that because the N branes are now coincident, the strings that stretched between

each brane are now massless and fill out extra degrees of freedom to enhance the world-

volume symmetry from U(1)N → U(N). Thus the deformations of the world-volume,

corresponding to excitations of the string ends, must now transform as N × N matrices

in the adjoint representation of this new U(N) gauge group. The only ambiguity is how

to obtain scalars from matrix valued objects, which is accomplished with the use of the

symmetrised trace - denoted by STr. The prescription for taking this trace is to firstly

take the symmetrised average over all orderings of Fab,Daφ
i, i[φi, φj ] before taking the

trace. Obviously now that we are dealing with non-Abelian gauge groups we must use the

covariant derivative in the pullback operation.

We are interested in the dynamics of this configuration, and so we will demand that

our transverse scalar fields are time dependent only, namely φ = φ(t). Additionally we will

begin by using diffeomorphism invariance to position the branes parallel to the gravitational

source, but displaced along one of the transverse directions. On each of the world volumes

we will also turn on an electric field using F0a = εa where a, b = 1 . . . p are world-volume

directions, and we implicitly assume that we take the A0 = 0 gauge and that the gauge

field commutes with itself. It will often be convenient to write ε2 =
∑

a εaε
a for simplicity.

For the sake of generality we will assume that the gauge field is homogenous on the world-

volume of the coincident branes. After calculating the determinant, the kinetic part of the

action can be seen to reduce to the following form

Skin = −τp

∫

dp+1ζSTr

(

e−φ
√

gp
xxg00(1 − λ2gzzg

−1
00 φ̇iφ̇jδij − λ2ε2g−1

xx g−1
00 )

)

, (2.3)

where we must still perform the symmetrised trace over the adjoint indices. It will be

useful for us to make an ansatz for the transverse scalars which reflects the non-Abelian

group structure of the theory, which we can do using the ’simple’ group SU(2). This can
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be accomplished by setting all but three of the transverse scalars to zero, where we then

impose the condition

φi = R(t)αi, (2.4)

where the αi are the generators of the N ×N representation of the SU(2) algebra satisfying

the usual commutation relation

[αi, αj ] = 2iεijkαk. (2.5)

Strictly speaking this ansatz should be imposed upon the complete equations of motion

and not upon the action, however it transpires that the ansatz is indeed consistent. Upon

substitution of our ansatz into the kinetic part of the action written above we find it reduces

to

Skin = −τp

∫

dp+1ζSTr

(

e−φ
√

gp
xxg00(1 − λ2gzzg

−1
00 Ṙ2αiαi − λ2ε2g−1

xx g−1
00 )

)

. (2.6)

In order to take the trace of this expression we need to Taylor expand the action and then

deal with all the symmetrised contributions of the various powers of the generators, however

we can make some headway by taking N to be large implying that all the 1/N correction

terms are negligible and can be dropped from the action. This limit is acceptable because

we wish to neglect gravitational back reaction. We can accomplish this by decoupling the

closed string sector of the theory, namely sending the factor gs → 0. However, we also

need to keep gsN < 1 and fixed whilst taking this limit and therefore we are forced into

taking the large N limit. We also note that the metric components are generally functions

of the transverse coordinates, which implies that they will be proportional to a trace over

the group generators. However, the radial coordinate implicit in the anzatz is not of the

correct dimensionality and thus we are forced to use the physical distance in the metric

functions. The implications for this are potentially far reaching, as we are assuming that

the metric (and dilaton) terms are singlets with respect to the symmetrised trace. Thus we

are treating the background as a semi-classical geometry, and fully expect there to be sub-

leading corrections which reflect the quantum nature of the theory. With these remarks in

mind, and using the definition of the quadratic Casimir CIn =
∑

i α
iαi = (N2 − 1)In, we

can pull various terms through the trace operation and write the full action as follows

S = −τp

∫

dp+1ζNgp/2
xx g

1/2
00 e−φ

√

(1 − gzzg
−1
00 λ2CṘ2 − g−1

xx g−1
00 λ2ε2)(1 + 4g2

zzλ
2CR4),

(2.7)

where we are making the reasonable assumption that the dilaton term is a c-number with

respect to the trace operation. Varying this term with respect to Ṙ and εa yields the

canonical momenta for the radial mode and the displacement field respectively, the latter

term being

Da =
τpVpe

−φg
p/2
xx g

1/2
00

√

1 + 4λ2CR4g2
zz

√

1 − gzzg
−1
00 λ2CṘ2 − g−1

xx g−1
00 λ2ε2

(

λ2εa

gxxg00

)

, (2.8)

where we note that Da is the electric flux along the xa direction on each of the world-

volumes and is related to the charge of the fundamental string. As usual, the canonical
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momenta allows us to construct the Hamiltonian via Legendre transform

H =
τpVpNe−φg

p/2
xx g

1/2
00

√

1 + 4g2
zzλ

2CR4

√

1 − gzzg
−1
00 λ2CṘ2 − g−1

xx g−1
00 λ2ε2

. (2.9)

At this juncture we note that R is not the physical distance of the probe branes from the

source, however the two distances are related via the expression

r2 =
λ2

N
Tr(φiφjδij) = λ2CR2, (2.10)

and so we may write the physical Hamiltonian as follows

Hphys =
τpVpNe−φg

p/2
xx g

1/2
00

√

1 − gzzg
−1
00 ṙ2 − g−1

xx g−1
00 λ2ε2

√

1 +
4g2

zzr
4

λ2C
, (2.11)

or we can write it in the Hamiltonian formalism

Hphys =

√

(

τpVpNe−φg
p/2
xx g

p/2
00

)2
(

1 +
4r4g2

zz

λ2C

)

+
g00Π2

gzzλ2C
+

D2gxxg00

λ2
(2.12)

In the above expressions we have defined Vp as the p-dimensional volume element of the

branes. Note that when p = 0, corresponding to coincident D0-branes, the electric field

contribution vanishes, as it must since the world-volume cannot support a rank two field

strength tensor. In general the Hamiltonian will be conserved, however εa will not. This is

because it is the flux that is the conserved charge on the D-brane, and not the gauge field.

However because of our homogenous ansatz we find that the electric field is conserved in

this instance, and so we may write it as follows

εa =
Da

H̃
, (2.13)

which shows us that the electric field is conserved and quantised with D units of charge.

2.1 Minkowski space dynamics

We have tried to keep the background space-time as general as possible, however in this

section we will consider the dynamics of these branes in the flat space limit. The situation

can be described as follows. We have N coincident Dp-branes with three excited transverse

scalar fields parameterising a fuzzy two-sphere, the physical radius of which is given by r.

The flat space Hamiltonian can be written simply as

H̃ =
1√

1 − ṙ2 − λ2ε2

√

1 +
4r4

λ2C
, (2.14)

where we introduce the simplifying notation H̃ = H/(τpVpN), and note that ṙ corresponds

to the velocity of the collapsing fuzzy sphere. Furthermore with this definition of the

Hamiltonian we lose all dependence on the dimensionality of the probe Dp-branes. Thus
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in the Minkowski limit all the p-branes yield the same equations, another example of p-

brane democracy. As is usual with this type of problem it will be more convenient for us

to employ the use of dimensionless variables [9, 15]. By making the following definitions

z =

√

2

λ
√

C
r, τ =

√

2

λ
√

C
t, e = λε, (2.15)

the Hamiltonian and effective potential can be written as follows

H̃ =

√

1 + z4

1 − ż2 − e2

Veff =

√

1 + z4

1 − e2
. (2.16)

The electric field must satisfy the usual constraint e2 ≤ 1 in order for the theory to remain

valid. The other constraint can be seen to be 1 ≥ ż2 + e2, which implies that the velocity

of the collapse is reduced by a factor
√

1 − e2, which is less than the speed of light For an

arbitrary field strength we see that the fuzzy sphere will tend to collapse down to zero size

as expected.

Our Hamiltonian has no explicit time dependence and is therefore a conserved charge

which will allow us to obtain a solution to the equation of motion. We choose the initial

conditions ż(0) = 0 and z(0) = z0 to indicate an initially static configuration at some

arbitrary distance z0. By integrating the equation of motion and using the many properties

of Jacobi Elliptic functions, we arrive at the solution

z(τ) = ±z0JacobiCN

[

√

2(1 − e2)τz0
√

1 + z4
0

,
1√
2

]

. (2.17)

Note that z0 corresponds to the initial radius of the fuzzy sphere (in dimensionless vari-

ables). Taking the positive sign initially, one sees that as time evolves the fuzzy sphere

collapses. The speed of the collapse is dependent upon the strength of the electric field,

because an increasing field implies that the branes move more slowly. The physical inter-

pretation of this is that the extra flux on the world-volume acts as extra ’mass’, which acts

to reduce the velocity. If there is a critical electric field which saturates the bound e2 = 1

then the fuzzy sphere will be static for all time. This is different to the result obtained when

considering the dynamics without gauge fields, which always implied collapsing solutions

- at least to leading order in 1/N . Eventually the sphere reaches zero size, however the

periodic nature of the solution appears to imply re-expansion into a region of negative z.

This is due to the ambiguity in taking the positive sign for the physical radius in (2.10) [9].

A similar remark applies when taking the minus sign in the above solution. Note that in

both cases, it is the R2 term that appears in the DBI action and therefore no potential for

discontinuities when we use the different sign choices for the physical radius.

The zeros of the elliptic function occur when the amplitude equals K(k), where K is

the complete elliptic integral of the first kind. This allows us to calculate the collapse time

– 7 –
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t∗ for the fuzzy sphere to be

τ∗ =

√

1 + z4
0

2(1 − e2)

1

z0
K

(

1√
2

)

, (2.18)

which agrees with our intuitive notion that by increasing the electric field, the collapse

takes longer to occur.

2.2 1/N Corrections in Minkowski space

In this section we will investigate the corrections to the theory arising from the symmetrised

trace prescription. These corrections were first derived in [15], and we refer the interested

reader to that paper for more details. In flat space it was emphasised that as the fuzzy

sphere collapses its velocity approaches the speed of light, and therefore higher order terms

in 1/N ought to become important in order to fully describe the dynamics. This is due

to the fact that the energy will increase as the velocity increases. It has been argued that

these corrections are all zero for a BPS object, however we suspect that this is only true for

flat space configurations where the requirement of minimal energy is satisfied by an object

being BPS. However the presence of an electric field on the brane world-volumes reduces

the velocity of the collapse by the factor
√

1 − e2 and thus the leading order Lagrangian

may remain valid - although there are difficulties associated with near critical electric fields

and the DBI [13]. In curved space the gravitational red shift appears to reduce the velocity

of the fuzzy sphere to sub-luminal speeds, however there was found to be no turning point

solution in the static potential and therefore no formation of non-Abelian bound states

(with the exception of D0-branes in the D6-brane background.)

The important result from is that the corrections to the Lagrangian an be written as

a series expansion in powers of C, thus our Hamiltonian can be shown to be the 0th order

in this expansion

H̃ =

(

1 − 2C

3

∂2

∂C2
+

14

45
C2 ∂4

∂C4
+ · · ·

)

H̃0. (2.19)

It will be convenient in what follows to return the original action for a flat background,

and define the following dimensionless parameters

r̃4 = 4λ2CR4 (2.20)

s̃2 = λ2CṘ2

e2 = λ2ε2

where the last expression has already been introduced in the previous section. The first

two equations can be regarded as defining complex parameters, constrained by a single

equation - namely the conservation of energy, and can be regarded as a ’radial’ variable

and a ’velocity’ variable respectively. In terms of these complex parameters we can define

the Hamiltonian to be

H̃ =

√

1 + r̃4

1 − s̃2 − e2
= Uγ, (2.21)
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where U can be regarded as a position dependent mass term, whilst γ is the modified rela-

tivistic factor as usual. Position dependent masses arise often in physics, in semiconductors

for example. If we now apply the leading order symmetrised trace correction to this form

of the Hamiltonian we obtain the following solution

H̃1 = Uγ − γ

6CU3

[

3U4γ4(1 − e2)2 − 4U4γ2(1 − e2) − 2U2γ2(1 − e2) + 4U2 − 1
]

, (2.22)

which represents the 1/N correction to the Hamiltonian in flat space. The first thing to

note is that when there is a critical (or near critical) electric field, the corrected Hamiltonian

reduces to

H̃1 ∼ U

is̃

(

1 − (4U2 − 1)

6CU4

)

, (2.23)

which is clearly imaginary and therefore does not correspond to a physical solution. We

can avoid this problem by rotating the background metric to a Euclidean signature and

studying the effects of over-critical electric fields, however we will not do that in this

instance 2.

More generally we will have an arbitrary non-critical electric field, however we can still

learn about the physical interpretation of the energy corrections. We first consider the

static solution, i.e zero velocity, in which case the Hamiltonian becomes

H1 =
U√

1 − e2

(

1 − (2U2 − U4 − 1)

6CU4

)

. (2.24)

The correction terms will be non-zero except for when we choose U = 1, or when U → ∞
corresponding to large radius. In this latter limit we would expect the geometry to resemble

the classical geometry of the two-sphere. It should be noted that there is no value of r for

which the energy will vanish. If we now consider the case where R → 0, the energy reduces

to

H1 = γ

(

1 − (γ2(1 − e2)2 − 2γ2(1 − e2) + 1)

2C

)

. (2.25)

The correction term will be minimised by sending s̃ → 0, however it can be seen that the

Hamiltonian itself will vanish if the velocity term satisfies

s̃2 = (1 − e2)

(

1 − 1

1 ±
√

2N

)

∼ (1 − e2) (2.26)

where we have explicitly taken the large N limit. Note that when the electric field is zero

this condition reduces to s̃2 = 1, implying that the branes are moving at the speed of light.

Therefore in general we see that increasing the strength of the electric field reduces the

velocity of the branes, as expected, and therefore can reduce the energy of the configuration

when it is located at the origin.

2We refer the interested reader to the recent work [13] for more information.
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2.3 Curved space dynamics

The dynamics of the fuzzy sphere in a curved background are generally non-trivial due

to the additional dependence of the metric components, and dilaton, upon the embed-

ding coordinates. Thus we can only obtain exact solutions by specifying the form of the

background. We repeat the physical Hamiltonian here for convenience.

H̃ =
e−φg

p/2
xx g

1/2
00

√

1 − gzzg
−1
00 ṙ2 − g−1

xx g−1
00 λ2ε2

√

1 +
4g2

zzr
4

λ2C
,

which allows us to define the static potential as follows

V =
e−φg

p/2
xx g

1/2
00

√

1 − g−1
xx g−1

00 λ2ε2

√

1 +
4g2

zzr
4

λ2C
(2.27)

The unknown dependence of the metric components upon the physical radius prevents us

from determining the general behaviour of the fuzzy sphere in this background. However

we can see that the maximum value for the electric field will be a function of the transverse

variables and therefore the radius of the fuzzy sphere. The general solution for the maximal

field value can be seen to be

εmax ≤
√

g00gxx

λ
. (2.28)

In our analysis we will assume that the electric field does not saturate this bound in order

to keep the action finite and real. There has been extensive work on overcritical fields on

D-branes, but this will not be relevant here. Using the conservation of the Hamiltonian we

find the general expression for the velocity of the collapsing fuzzy sphere

ṙ =
δH
δΠ

=

(

Πg00

Hgzzλ2C

)

. (2.29)

Now for general supergravity solutions we expect the metric components corresponding

to the SO(1, q) directions to correspond to either flat, or decreasing monotonic functions

of the physical radius. Conversely we would anticipate that the gzz functions are either

flat, or increasing monotonic functions of r - becoming singular when we reach zero radius.

Therefore the general expression for the velocity suggests that it is a decreasing function of

the physical radius regardless of the specific values of the ratio of Π/H, provided that it is

finite. The implication for this is that the sphere would take an infinite amount of time to

collapse to zero size, neglecting any open string effects at short distances. This ’braking’

behaviour is in contrast to what happens in flat space, where the fuzzy sphere collapses at

an ever increasing velocity. However this is in a gravitational background and we expect

the velocity term to be red shifted by the factor g00/gzz , thus by switching to proper time

variables we would find that the collapse occurs in finite time.

The acceleration of the sphere turns out to be

r̈ =
Πṙ

Hgzzλ2C

(

g′00 −
g′zz

gzz

)

, (2.30)
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where primes denote derivatives with respect to the physical radius. The equation can be

seen to be zero in three cases, firstly when ṙ is zero which is the trivial solution as the

sphere is static. Secondly when gzz → ∞ which implies that we must take r → 0 and so

the effective action breaks down, and finally when we have the case g00 = ln(gzz). Provided

the derivatives of the metric function are continuous, we see that the acceleration will never

become singular and so we would expect the DBI to provide a reasonable description of

the dynamics of the coincident branes.

At this point it is useful to consider some concrete examples of non-trivial backgrounds

in order to fully understand the dynamical collapse of the fuzzy sphere.

2.3.1 Dq-brane background

The supergravity solution for a background generated by coincident Dq-branes is given by

the following

ds2 = H−1/2ηµνdxµdxν + H1/2dzadzbδab (2.31)

e−φ = H(q−3)/4

H = 1 +
kq

r7−q
= 1 +

(2
√

π)5−qMgsΓ(7−q
2 )l7−q

s

r7−q
,

where r is the physical distance from the source branes, and also the radius of our fuzzy

sphere. As usual gs, ls are the string coupling and string length respectively. It must be

remembered that q even corresponds to type IIA string theory, whilst q odd corresponds

to type IIB string theory. As we are considering the general case of Dp-branes in a Dq-

brane background, we can neglect the RR couplings arising from the background branes.

Upon identification of the various metric components we write the conserved Hamiltonian

as follows

H̃ =
H(q−p−4)/4

√
1 − Hṙ2 − Hλ2ε2

√

1 +
4Hr4

λ2C
(2.32)

and the expression for the static potential becomes

Veff =
H(q−p−4)/4

√
1 − Hλ2ε2

√

1 +
4Hr4

λ2C
(2.33)

The last expression tells us that the electric field can diverge as the radius of the fuzzy

sphere collapses.

2.3.2 NS5-brane background

The NS5-brane background has been extensively researched of late, as it is a simple non-

trivial solitonic background which also has links to little string theory. The supergravity

solutions for M−NS5 branes are shown below, note that they are invariant under T-duality

because the harmonic function only couples to the transverse components of the metric

ds2 = ηµνdxµdxν + Hdzadzbδab (2.34)

e−φ = H−1/2

H = 1 +
Ml2s
r2

.
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The expression of interest for us is the static potential, which can be seen to reduce to

Veff =
1√

H
√

1 − λ2ε2

√

1 +
4H2r4

λ2C
, (2.35)

implying that the maximal electric field bound is εmax ≤ λ−1. It is straight-forward to see

that there is no turning point for the potential, except when we take r to be large which

corresponds to the global maximum. The implication is that there is no radius at which

the fuzzy sphere may stabilise at, and therefore nothing to halt the progress of the probe

branes toward the five-branes even with the inclusion of an electric field. The analysis of this

solution was detailed in [19], and we refer the interested reader there for more information.

2.3.3 F -string background

We can also consider the background sourced by M fundamental strings, where for con-

sistency we should limit the dimensionality of the probe branes to p ≤ 1 in order to fully

justify our assumption about neglecting backreaction effects, the resulting configuration

is a bound state of fundamental strings and D-strings more commonly referred to as as

(p, q)-string. The supergravity background solution is

ds2 = H−1ηµν + dzadzbδab (2.36)

e−φ = H1/2

H = 1 +
25π2g2

s l
6
sM

r6
,

where now µ, ν run over one temporal and one spatial dimension. The static potential for

the bound state can be written

Veff =
1

H

√

Hτ̃2
1

(

1 +
4r4

λ2C

)

+
Π2H

λ2C
+

D2

λ2
, (2.37)

where we have rescaled the D1-brane tension such that τ̃1 = τ1V1N . Thus we effectively

have a (D,N)-string bound state. We are at liberty to consider various limits of the

potential, however the general behaviour is that it is always a monotonically decreasing

function of the radius. For the D-string dominated solution we find the Hamiltonian scales

like the tension of the string on a fuzzy sphere, namely

H ∼
√

τ̃2
1

H

(

1 +
4r4

λ2C

)

. (2.38)

Conversely, taking the F -string dominated solution we find that the Hamiltonian scales

with the displacement field

H ∼ |D|
Hλ

, (2.39)

which shows that both configurations will be gravitationally attracted toward the F -string

background as this is the lowest energy state. The background string coupling tends

to zero with the physical radius of the fuzzy sphere which means that our world-volume
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description can be trusted to very late times. As the strings move closer together we expect

the formation of a new (D + M,N)-string bound state. The binding energy of which can

be shown to be of the form

Ebind ∼
√

τ̃2
1 + (D + M)2. (2.40)

This result mimics the behaviour in the Abelian theory where it was shown that the

condition gs → 0 with gsN À 1 prevented the emission of closed string states and as such

could be regarded as a semi-classical field theory. We close with a remark about the electric

field in this instance. In the large radius limit we find that the displacement field can be

well approximated by

D ∼ 2τ̃1λε∞r2

√
C

√

1 − λ2ε2
∞

, (2.41)

where ε∞ reflects the strength of the field at large distances where the harmonic function

is approximately unity. As the sphere collapses, the electric field is driven to its critical

value, resulting in an increase in the displacement field. This behaviour can be seen via

the expression

Da = Hλ2H2εa, (2.42)

where the right hand side naturally becomes large as the radius shrinks. This tells us that

at exactly at the threshold point of the bound state, the electric field reaches its critical

value and the string becomes tensionless. A more detailed analysis with the inclusion of

angular momentum modes would tell us a great deal about the formation of this bound

state. We have also assumed here that the closed string modes will be suppressed, however

a more detailed investigation would be useful as the supergravity constraints impose the

strong condition M À N if we are to neglect back reaction. This is potentially useful in

the investigation of cosmic superstring networks [32].

2.4 1/N corrections in curved space

As in the flat space case we can consider higher order corrections to the energy in powers

of 1/N coming from the application of the symmetrised trace. We will find it convenient

to define the following variables

α = e−φgp/2
xx g

1/2
00 β =

√

1 + 4g2
zzR

4λ2C γ = (1 − e2 − gzzg00Ṙ
2λ2C)−1/2, (2.43)

where e2 = g−1
xx g−1

00 λ2ε2 and therefore the Hamiltonian reduces to H̃ = αβγ. We know

that this energy is the zeroth order expansion in powers of 1/N and using (2.19) we find

that the first order Hamiltonian is remarkably similar to that constructed in the flat space

instance

H̃1 = αβγ − αγ

6Cβ3

(

3β4γ2(1 − e2) − 4β4γ2(1 − e2) − 2β2γ2(1 − e2) + 4β2 − 1
)

(2.44)

In deriving this expression we are explicitly assuming that the metric components are

unaffected by the symmetrised trace prescription. Note that the energy to all orders will

depend on the α factor, and therefore when this is zero the energy of the configuration

will be zero. As we have argued, in general the metric functions g00 and gxx are decreasing
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functions of r, so that they vanish when r → 0 so we may expect that the energy will

always tend to zero. However we have no way of knowing the general behaviour of the

dilaton term with respect to the radial distance. What is clear is that minimising α is

equivalent to minimising the energy. We begin by considering the case of zero electric field,

we choose to set ε = 0 rather than taking the limit of the metric components to zero as

this will imply that α and therefore the energy is zero. We further wish to consider the

static case, with the branes at an arbitrary distance away from the source. This reduces

the Hamiltonian to the following form

H̃1 = αβ − α

6Cβ3
(2β2 − β4 − 1). (2.45)

There will be no correction terms when β = 1, which corresponds to the two cases R → 0

or g2
zz → 0. The first of these implies that r → 0 and so the branes will be on top of

the sources where we expect the DBI to break down. The second case corresponds to

sending r → ∞ because the metric component is generally an increasing function as r → 0.

This latter limit is unphysical in our situation, and so we see that the sphere energetically

favours collapse from a static position. There will also not be any corrections as β → ∞,

which implies that either r → ∞, 0 leading to the same remarks as above.

We now insist on keeping the electric field turned on, although the modification to the

Hamiltonian in the static limit is very similar to the zero field case. The solution reduces

to

H̃1 =
αβ√
1 − e2

(

1 − (2β2 − β4 − 1)

6Cβ4

)

. (2.46)

In this case the correction terms will only vanish as β → ∞, which corresponds to the case

of infinite energy for the fuzzy sphere. Thus for finite electric field we see that the solution

will still collapse toward zero size provided that the dilaton term does not blow up in the

small r limit. In fact this is what distinguishes the D6−D0-brane system from the others

as this is precisely where the dilaton term becomes large as the same time that the other

metric components are going to zero. The resultant energy profile is not monotonic but

yields a stable minimum in which a bound state can form [17, 19]. The case of critical,

or almost critical field, is similar to the flat space scenario, where the energy becomes

imaginary.

3. Brane intersections in curved space

Thus far our our analysis has dealt with parallel brane configurations, however this is not

the only place non-commutative geometry enters in string theory as we can also consider

intersecting branes. The simplest intersections have been investigated in a series of papers,

where ND1-branes intersect with either D3, D5 or D7-branes in flat space-time [5 – 7, 9,

11]. There are two dual world-volume descriptions of the intersection. The first is from the

higher dimensional brane viewpoint, where the D1-brane is realised as an Abelian BIon

spike solution in a transverse direction. For the D3 scenario it is necessary to turn on a

homogenous magnetic field on the brane, since the D-string acts as a magnetic monopole

solution. The D5 world-volume description is more complicated because we have a non
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vanishing second Chern class. The dual picture is from the non-Abelian viewpoint of the

D-strings, which can be seen to blow up into the higher dimensional branes when we use

non-commutative co-ordinates.

In this section we will investigate the D1−D3 intersection in the generic, static curved

background labelled by the metric solution (2.1), with the inclusion of a constant electric

field along the string world-volume. As such, in contrast to section 2, we will not consider

ε as a dynamical degree of freedom. In fact the addition of a constant electric field turns

the D-string into a (p, q)-string as the electric field can be interpreted as the dissolving

of the fundamental string degrees of freedom into the world-volume. We will assume that

the string is oriented in the X0 − X9 plane, where we will take X0 = t and X9 = σ to

parameterise the embedding coordinates. We will also take the gauge A0 = 0 and assume

that the gauge field commutes with the transverse scalars. The kinetic part of the action

reduces to the following expression

S = −τ1

∫

d2σSTr

(

e−φ
√

g00gzz(1 − λ2gxxg−1
00 φ̇aφ̇a + λ2gxxg−1

zz φ′
aφ

′
aλ

2ε2g−1
00 g−1

zz )

)

,

(3.1)

where a dot denotes derivatives with respect to time, and primes are derivatives with respect

to σ. In the above we use the standard notation of representing the matrix-valued world

volume scalar fields as φa which are not to be confused with the dilaton field φ. As in [5]

we simplify our analysis by only considering fluctuations of the D-strings perpendicular to

their world sheet that are also parallel to the world volume of the source branes. As such

we look to employ the SU(2) ansatz

φa = R(t, σ)αi, a = 1, 2, 3, (3.2)

where the αi again are the generators of the algebra and a = 1, 2, 3 label coordinates

parallel to the source branes. Inserting the ansatz into the full action, and taking the large

N limit produces the following

S = −τ1

∫

d2σ N e−φ
√

(g00gzz)(1 − λ2Cgxxg−1
00 Ṙ2 + λ2Cgxxg

−1
zz R′2 − λ2ε2g−1

00 g−1
zz )

√

(1 + 4λ2CR4g2
xx), (3.3)

where we have neglected higher order corrections to the DBI, and also ignored any potential

Chern-Simons term which may arise from the background source.

The metric components are typically functions of the 9 − q transverse coordinates to

the source branes. By our simplification above, we can consistently set the transverse

coordinates to zero with the exception of x9 = σ, and thus all the metric components are

now explicit functions of σ. We will also assume that any dilaton term is purely a function

of σ in order to simplify our analysis. In most of what follows we will only consider the

near horizon approximation, however we will occasionally make reference to the Minkowski

limit.

In what follows we shall be interested in either the time dependent solution or the

spatial solution. It will be the latter that defines the fuzzy funnel solution. In any case the
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diagonal components of the energy-momentum tensor for the above action can be written

as follows

T00 =
e−φ

√

g00gzz(1 + 4λ2CR4g2
xx)(1 + λ2CR′2gxxg−1

zz − g−1
00 g−1

zz λ2ε2)
√

1 − λ2CṘ2gxxg−1
00 + λ2CR′2gxxg−1

zz − g−1
00 g−1

zz λ2ε2

Tσσ =
e−φ

√

g00gzz(1 + 4λ2CR4g2
xx)(1 − λ2CṘ2gxxg−1

00 − g−1
00 g−1

zz λ2ε2)
√

1 − λ2CṘ2gxxg−1
00 + λ2CR′2gxxg−1

zz − g−1
00 g−1

zz λ2ε2
, (3.4)

where we have explicitly divided out each term by the factor τ1NV1 which is independent

of any space-time coordinates and will not affect the equations of motion. We must now

consider the static and dynamical cases separately if we wish to find simple solutions to

the equations of motion.

3.1 Funnel solutions

We can now attempt to find solutions by specifying the background explicitly. We know

that in flat Minkowski space the solutions correspond to funnels, where the lower-dimen-

sional branes blow up into a solitary D3-brane. We may expect these funnel type solutions

to occur in curved space as well, however the form of the solution will be different. Firstly

consider a stack of Dq-branes, which have the following supergravity solution

ds2 = H−1/2ηµνdxµdxν + H1/2dxidxjδij , e−φ = H(q−3)/4, (3.5)

where µ, ν are world-volume directions and i, j are transverse directions. The warp-factor

H is a harmonic function in the transverse directions, which since we are only considering

fluctuations of the D-string parallel to the Dq world volume implies they are only dependent

on
∑9

i=9−q(x
i)2 = σ2 and we assume q = 1, 3, 5 only because we are looking at type IIB

string theory. The equation of motion can be satisfied by the following expression

R′2 =
1

λ2CH−1

(

H(q−3)/2{1 + 4λ2CR4H−1}(1 − λ2ε2)2 − (1 − λ2ε2)
)

. (3.6)

Note that for critical electric fields the r.h.s. of the expression vanishes which implies that

R =constant and therefore no funnel solution regardless of the background. For near

critical fields, the solution is approximately constant until we reach the point where R

diverges. Thus the general behaviour is that increasing the strength of the gauge field

forces the funnel to alter its shape. The stronger the field, the wider the funnel and the

larger the fuzzy sphere radius. Temporarily setting the electric field to zero brings us back

to the D-string solution, and the equation of motion reduces as follows

R′2 =
1

λ2CH−1

(

H(q−3)/2{1 + 4λ2CR4H−1} − 1
)

, (3.7)

which can be seen to be trivially solved when q = 3 since the eom reduces to R′ = 2R2 and

we recover the funnel solution 3

R(σ) =
−1

2(σ − σ0)
. (3.8)

3Note that this is also the BPS condition in flat space, however the D3-brane will also be supersymmetric

in the D3-brane background and so this is also the BPS condition in this instance.
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The radius of the funnel diverges at σ = σ0 where the D-strings blow up into a D3-brane.

Note that the minus sign indicates this is a D3-brane and not a D̄3-brane, since the latter

will be unstable in the background. In fact the harmonic function drops out of the equations

implying the funnel solution is insensitive to the curved background. This is due to the

vanishing dilaton term. If we insist on the inclusion of the electric field in the D3-brane

solution then we can shift variables in the integration to obtain a solution, which is a simple

deformation of the standard funnel as we would anticipate [6]

R(σ) ∼ −1

2
√

1 − λ2ε2(σ − σ0)
. (3.9)

The effect of increasing the electric field is to force the funnel to open up more at smaller

values of σ. In fact for near critical fields we expect the funnel to diverge before the point

σ0, implying that the D3-brane is located at a different position to the case of zero field.

The structure of the equation of motion prohibits us from finding an exact solution in the

D5 and D1-backgrounds.

We can also look at the NS5-brane background, where the supergravity solutions are

given in (2.34). The solution with zero electric field can be parameterised by R′ = 2R2
√

H,

with H(σ) given by (2.34) with r2 = σ2. In the first instance, if we look in the throat

approximation (ie dropping the factor of unity in H) we find the funnel solution

R(σ) =
−1

2
√

Ml2s ln(σ/σ0)
. (3.10)

Here we have selected the cut-off distance σ0 to represent the location of the D3-brane in the

transverse space. Because the dilaton term tends to blow up as we approach the fivebranes,

we must worry that our solution (being weakly coupled to neglect backreaction) may not be

valid deep in the throat geometry. Therefore this solution can be trusted when the curvature

of the bulk geometry is relatively small. Interestingly we see the funnel solution is invariant

(up to a sign) under σ → 1/σ, which is related to the large/small duality problem [9] and

standard T -duality solutions in type II string theory. The change in sign reflects the

change in orientation of the D3-brane, however as both D and D̄-branes are unstable in

the fivebrane background the minus sign is technically irrelevant. It may be possible to

probe further into the throat using the corrections from the symmetrised trace. The idea

would be to use the fact that gsN is constant, but take a slightly larger value for the string

coupling. In order to compensate for this we must reduce the number of D-strings and

therefore extra 1/N terms will become important. Using the technology developed in [15]

we can calculate these corrections and check to see how the funnel solution is modified.

We must also recall that a D-brane preserves a different half of the supersymmetry algebra

than the fivebranes, therefore the supersymmetry will be explicitly broken (or at least

non-linearly realised).

We can extend our solution above to the case where we keep the full expression for

H. This yields interpolating solution between the throat solution and Minkowski space,
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given by

R(σ) =
∓1

2

(

√

Ml2s + σ2 −
√

Ml2s + σ2
0 +

√

Ml2s ln

{

σ[
√

Ml2s+
√

Ml2s+σ2

0
]

σ0[
√

Ml2s+
√

Ml2s+σ2]

}) (3.11)

which can be seen to yield the two asymptotic solutions when we take the appropriate

limit. This solution is particularly interesting because of the cut-off imposed in the integral.

On one side of the D3-brane we have a semi-infinite string solution (solution with +sign

in (3.11) whilst on the other (- sign choice) we have a string of finite length. In the throat

approximation we can relate the two solutions through a σ → 1/σ duality. The finite length

of the string implies that the energy of the solution is finite. This differs dramatically from

the Minkowksi space solution where the energy will be infinite as the string is of infinite

length. The profile of the solution therefore relates a finite energy configuration to an

infinite energy configuration. This behaviour may well have an interesting analogue in the

Abelian world-volume theory.

The corresponding funnel solution in the background of fundamental strings (2.36)

can be obtained from the following expression R′2 = 4R4/H, which gives, in the throat

approximation,

R(σ) =
−2

√
k

σ4 − σ4
0

, (3.12)

obviously diverging strongly in the limit that σ → σ0. Of course there are many other

kinds of backgrounds that we are free to consider. As an example we could look at the

static Maki-Shiraishi solutions corresponding to a static black hole geometry [20]. In this

case we see that R(σ) ∝ σ5/2 − σ
5/2
0 which implies that the funnel only diverges at large

values of σ, very far from the event horizon of the black hole. This class of metrics also

allows for time dependent solutions, corresponding to gases of D0-branes and may play an

important role in the study of matrix cosmology [21, 22].

Finally, we note that even though it is difficult to obtain an analytic solution of the

funnel profile in Dq-brane (for q 6= 3)- backgrounds progress can be made in the large R

approximation. In this case we find from (3.6)

R′ ≈ 2H(q−3)/4R2 (3.13)

which can be integrated to yield approximate (large R ) solutions.

3.2 1/N corrections to the fuzzy funnel

We are interested in the corrections to the funnel solutions we have found, particularly

those arising from the symmetrised trace prescription. In flat space the funnel is a BPS

configuration and thus insensitive to any corrections to all orders. In curved space we

have seen that the funnel solution will not generally correspond to a BPS configuration

as the bulk supersymmetries will be broken. Using (2.19) we can calculate the leading

1/N corrections to the Hamiltonian. As usual it is convenient to introduce the following

expressions to simplify the results

α = e−φ√g00gzz, β =
√

1 + 4λ2CR4g2
xx, γ =

√

1 + λ2CR′2gxxg−1
zz − e2,
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where we have also introduced the simplification e2 = λ2ε2g−1
00 g−1

zz . This allows us to write

the first correction to the Hamiltonian, assuming of course that the dilaton term is not a

function of the Casimir

H1 = αβγ − α

6C

{

2(β2 − 1)(γ2 − 1 + e2)

βγ
− γ(β2 − 1)2

β3
− β(γ2 − 1 + e2)2

γ3

}

. (3.14)

Now, setting the electric field to zero implies that the correction terms will cancel out to

zero when β = γ. This can actually be seen just by demanding minimisation of H0, however

we can also see that the correction terms vanish upon implementation of the symmetrised

trace. The minimisation yields a constraint on the curvature which is given by the following

R′2 = 4R4gxxgzz. (3.15)

In flat space this is just the BPS condition which leads to the simple funnel solution. In

certain backgrounds where the gxx components equal the inverse of the gzz components -

for example Dq-brane backgrounds - we also recover the simple funnel solution. However

we know that this is only a solution to the equation of motion in the D3-brane background,

and so we seem to have found solutions satisfying the minimal energy condition but which

do not solve the equations of motion. In the NS5 and F -string backgrounds we see that

this energy condition coincides with a solution to the equations of motion, and so we expect

those particular funnel solutions to be minimal energy solutions. This tells us is that the

symmetrised trace corrections are zero for configurations which are in their minimal energy

states. In flat space the minimal energy state coincides with the BPS condition which is

why we do not have corrections. In general the lowest energy configuration may not be

BPS but will still receive no corrections from the symmetrised trace. The general solution

consistent with energy minimisation can be written as

R(σ) =
∓1

2
∫

dσ
√

gxxgzz
=

∓1

2
∫

dσf(σ)
. (3.16)

We expect simple power law behaviour for f(σ) ∼ σn and so the solution can be written as

R(σ) ∼ ∓(n + 1)

2(σn+1 − σn+1
0 )

, (3.17)

where n can be positive or negative, but not equal to −1. The case where n = 1 corresponds

to flat space. In the above expression we have neglected the dimensionality constant coming

from the function f . When n = −1 the solution reduces to the inverse logarithm solution we

find in the NS5-brane background. Note that when n is negative we do not obtain funnel

solutions as the radius of the fuzzy sphere never diverges, instead it monotonically increases

with the distance from the sources. This indicates that these solutions do not expand into

higher dimensional branes, and will not have an Abelian world-volume description.

Even though the funnel configuration appears to satisfy the energy minimisation con-

dition, the energy itself still has dependence on the location of the funnel in the throat

through the α term. For the three cases where we find explicit brane solutions, namely
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the D3, NS5 and F -string backgrounds this term reduces to unity. In the D5-brane back-

ground we see that α ∝ 1/σ and so the solution minimises its energy when it is far from

the sources and thus well approximated by the simple funnel solution. The D1-brane

background yields α ∝ σ3 and so the funnel is only a solution when it is on top of the back-

ground branes, which is where our effective action will no longer be valid. This perhaps

explains why we were unable to find analytic solutions to the funnel equation of motion.

We should note at this point that gs → 0 with σ in the D5 case, implying that the tension

of the branes will become infinite and again our action will be invalidated. In the D1 case

we see that the coupling becomes strong as σ → 0, therefore the tension of the branes

is small but our assumption that gsN < 1 must be violated. It appears that both these

backgrounds cause the effective action to break down and so we cannot trust our solutions

except at large σ, where the background is essentially flat and we recover our simple funnel

solution. The reason why this is not the case in the NS5-brane background is because

their tension goes as 1/g2
s , and so the coincident brane solution has a much larger mass

than the N D-strings.

Setting aside the minimal energy condition for a moment we can make some observa-

tions about the energy of the funnel including the leading order correction terms. Firstly

we consider the case R′ = 0 corresponding to no curvature. The energy can be written as

H1 = αβ
√

1 − e2

(

1 +
α(β2 − 1)2

6Cβ4

)

. (3.18)

Clearly when β2 = 1 there will be no corrections to the energy, a condition that can

be satisfied either by taking R → 0 or g2
xx → 0. The first condition corresponds to no

curvature, with the strings located at an infinite distance away from the background source.

The second condition is the more interesting as it generally implies that σ → 0, or that the

strings are located at the source. The resultant energy for the strings is then determined

by α - provided we have a sub-critical electric field, and so we see that minimising α is

equivalent to minimising the energy. We can also consider the case where we take R = 0, to

see the effect this has on the energy and its corrections. The resultant expression becomes

H1 = αγ

(

1 +
λ2R′2gxxg−1

zz

6γ4

)

. (3.19)

Again we see that the correction term vanishes if we demand the curvature to be zero, or

alternatively we can set gxxg−1
zz → 0 either as a product or individually, which basically im-

plies that σ → 0 as usual. We see once more that α plays the dominant role in determining

the energy, and that if this term can vanish then so can the energy. This helps to explain

why we cannot obtain analytic solutions for the D5 and D1-backgrounds, as in these cases

the α term is a function of σ which implies that the energy will either diverge, or tend to

zero with σ, depending on the dimensionality of the source branes. Therefore the energy

is dependent upon the space-time variables. For the D3, NS5 and F -string backgrounds

we find that α = 1 and thus it is the shape of the funnel itself which dictates the minimal

energy configuration.
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3.3 Time dependence and dualities

In the time dependent case we again use the conservation of the energy-momentum tensor

to obtain the equation of motion

Ṙ2 =
g00(1 − g−1

00 g−1
zz λ2ε2)A

λ2Cgxxḡ00ḡzz(1 + 4λ2CR4
0ḡ

2
xx)(1 − ḡ−1

00 ḡ−1
zz λ2ε2)

, (3.20)

where the coefficient A is written as follows

A = −(e2(φ0−φ)g00gzz(1 + 4λ2CR4g2
xx)(1 − g−1

00 g−1
zz λ2ε2) −

− ḡ00ḡzz(1 + 4λ2CR4
0ḡ

2
xx)(1 − ḡ−1

00 ḡ−1
zz λ2ε2)).

In deriving this expression we have imposed the initial conditions that R(t = 0) = R0 when

Ṙ = 0, and the metric components at this initial point have been denoted by a bar. Note

also the factor of eφ0 in the solution which reflects the initial value of the dilaton subject

to these boundary conditions. In fact this equation is remarkably similar to the static one,

which can be calculated to yield

R′2 =
gzz(1 − g−1

00 g−1
zz λ2ε2)B

λ2Cgxxḡ00ḡzz(1 + 4λ2CR4
0ḡ

2
xx)(1 − ḡ−1

00 ḡ−1
zz λ2ε2)

, (3.21)

where the coefficient B turns out to be simply −A If we consider the case where the D-

string is located far from the sources in flat Minkowski space, the metric components and

the dilaton can be set to unity. in this limit the two equations of motion reduce to

R′2 =
4(1 − λ2ε2)(R4

0 − R4)

1 + 4λ2CR4
0

(3.22)

Ṙ2 =
4(1 − λ2ε2)(R4 − R4

0)

1 + 4λ2CR4
0

,

which are clearly invariant under the following invertible world-sheet transformation t →
iσ, which is nothing more than Wick rotation. If we re-write these equations using dimen-

sionless variables as in (2.15), introducing a similar transformation on the σ coordinate,

then we find that the two equations of motion are related via ż = iz′. Therefore knowl-

edge of one of the solutions (2.17) automatically implies knowledge of the other solution

as follows

z(τ) = ±z0JacobiCN

[

√

2(1 − e2)τz0
√

1 + z4
0

,
1√
2

]

(3.23)

z(σ) = ± z0

JacobiCN

[√
2(1−e2)σz0√

1+z4

0

, 1√
2

] .

In the last line we have used one of the various properties of elliptic functions. As discussed

in an earlier paper [9], the last equation defines a periodic array of D3/D̄3-branes connected

by the fuzzy D1-funnels. There are two important comments to be made at this point.

Firstly that the equation of motion for a collapsing fuzzy sphere is the same as that of a
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time-dependent funnel in Minkowski space. Secondly the world-sheet transformation we

employed on the equation of motion has a geometric interpretation. Instead of performing

a Wick rotation on the time variable, we can instead identify τ with σ provided we also send

z → 1/z. Using the definition of the elliptic function we can easily verify that this is true.

Therefore we have a concrete example of the so called large/ small duality [9] that pervades

all string theories, as a collapsing fuzzy sphere of radius R is dual to a brane-anti-brane

array with interpolating funnel solutions of maximal radius 1/R.

In the more general case it is clear to see that we recover the static equation from the

time dependent one by performing the following transformation

ε → 0, t → iσ, g00 → gzz. (3.24)

This corresponds to a Wick rotation on the worldsheet and a space-time transformation

in the bulk, and is therefore a highly non-trivial symmetry. However we can see that

the transformation is not invertible, unlike in Minkowski space, due to the σ dependence

of the metric components. If we start with the static equation and rotate the spatial

coordinate such that σ → −iτ , then the metric components (as well as the curvature term)

become time dependent - corresponding to some form of time dependent background 4. If

we take this solution and then Wick rotate the time variable again we recover the spatial

dependent equation. Thus it appears there is a mapping from the time dependent equation

to the static one, but not vice-versa. The static equation is invariant under a double Wick

rotation, which appears to be the only automorphism of that particular equation. This

implies that the large/small duality is broken in this instance by the presence of curved

spacetime, which we ought to expect since the time-like and space-like Killing vectors

cannot be rotated into one another due to the additional spatial dependence of the metric

components. In flat space the metric, and therefore the Killing vectors, are invariant under

Wick rotation and so the field theory solutions ought to respect this symmetry.

There is, however, a particularly interesting transformation in curved space when the

metric components g00 and gzz are inverses of each other - as in the case for Dq-brane

backgrounds in the near horizon limit. Writing the harmonic function in terms of the

dimensionless distance variable z̃

H ∼ 1

z̃7−q
, (3.25)

then it is straightforward to see that the transformation to the static equation is nothing

more than taking z̃ → 1/z̃.

One further comment should be made here with regard to the interpretation of the

dynamical solution. In the Minkowski limit we saw that the time dependent funnel solution

yielded the same equations of motion as the collapsing fuzzy sphere. This led [9] to postulate

the existence of a duality between contracting fuzzy spheres and funnels. In curved space

we see that this interpretation is no longer valid, since the equations of motion coming

from the collapsing fuzzy sphere are different - as shown in section 2.

4Unfortunately these are not the spacelike D-brane supergravity solutions constructed in [12].
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4. The dual picture — D3 world-volume theory

Our work on constructing funnel solutions in curved space has yielded some interesting

results. At this stage we would like to check our assumption that the funnels do in fact

lead to the emergence of D3-branes, which can be done in the dual D3 world-volume theory.

We begin with the effective action for a solitary D3-brane in a general background with

vanishing Kalb-Ramond two form

S = −τ3

∫

d4ζe−φ
√

−det(Gab + λFab), (4.1)

where Gab is the pullback of the background metric to the world-volume and Fab is the U(1)

field strength as usual. The D-strings in this theory will appear as magnetic monopoles on

the D3-brane, thus we must ensure a non-trivial magnetic field is turned on. We choose

this to be Fab = εabcBc, with roman indices running over the world-volume. Finally we

must also ensure that one of the transverse scalars - σ is excited. As usual we neglect

higher derivative terms in the DBI action, and employ the use of static gauge. The result

for the static solution is as follows

S = −τ3

∫

d4ζe−φ
√

g00g3
xx(1 + λ2gzzg

−1
xx (~∇σ)2 + λ2g−2

xx
~B2 + λ4gzzg

−3
xx ( ~B.~∇σ)2). (4.2)

It should be noted that the scalar field has canonical dimension of L−1, which we need

to be careful of when interpreting our solutions - particularly when trying to show that

this is indeed the dual picture configuration. The equation of motion for the transverse

scalar is complicated in curved space, and not readily amenable to analytic solutions. Thus

we will attempt to find the spike profiles by searching for configurations which minimise

the energy, a tactic which worked for several backgrounds in the non-Abelian case, where

the energy minimisation condition corresponded to the equations of motion. The energy

density in the static simply equals −L therefore we may write

H = τ3

∫

d3ζe−φ
√

g00g3
xx(1 + λ2gzzg

−1
xx (~∇σ)2 + λ2g−2

xx
~B2 + λ4gzzg

−3
xx ( ~B.~∇σ)2)

= τ3

∫

d3ζe−φ
√

g00g3
xx

√

λ2|
√

gzzg
−1
xx

~∇σ ± g−1
xx

~B|2 + (1 ∓ λ2g
1/2
zz g

−3/2
xx

~B.~∇σ)2,

where in the last line we have written the determinant as the sum of two squares. We see

that there is an energy bound given by

H ≥ τ3

∫

d3ζe−φ
√

g00g3
xx|1 ∓ λ2g1/2

zz g−3/2
xx

~B.~∇σ|, (4.3)

which is saturated provided that the σ-field satisfies the following constraint

~B = ∓~∇σ
√

gxxgzz, (4.4)

which can be seen to reduce to the usual flat space constraint ~B = ∓~∇σ as required.

The expression for the energy bound (4.3) seems to be the sum of two terms where the
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second one is topological in nature. We wish to show that this expression has a simple

interpretation in terms of the energy of the D3-brane and the energy of a warped spike

solution. We will write the first term as follows

HD3 = τ3

∫

d3ζe−φ
√

g00g3
xx. (4.5)

Now in flat space the energy of the D3-brane is simply τ3

∫

d3ζ, however as we are in a

generic curved background we must also include the contribution from a non-trivial dilaton.

This means the energy is modified to become τ3

∫

d3ζe−φ which is exactly the equation we

wrote down for the energy of a warped D3-brane. Thus our intuition about the first term is

correct, namely that it corresponds to the energy of the brane in curved space. The second

term is a simple extension of the BIon spike solution, generalised to a curved background.

We return now to (4.4) which gives us important information about the profile of the

spike solution. It is clear that the second term here is a total derivative if the B field

satisfies the modified Gauss law equation

~∇.(
√

g00gzze
−φ ~B) = 0. (4.6)

This modification of the Gauss law appears to be due to red-shifting of the magnetic field

for an observer in the UV end of the background geometry. Such red-shifting effects are

common in warped metrics. Under these circumstances the second term would then be

determined by the boundary values of σ(r) and so we would find a contribution to the

energy proportional to σ(r = ∞)− σ(r = 0) which could be interpreted as the energy of a

string stretching along the σ direction .i.e. the D-strings of the non-Abelian theory.

In the case of background NS5 branes or F -strings, which are both charged under the

NS field, it is easy to check that (4.6) reduces to the familiar flat-space gauss constraint

due to the cancellation with the metric components ~∇. ~B = 0. In the case of Dq-brane

backgrounds, which are charged under the RR fields, such a cancellation between the

dilaton and metric components does not occur and the Gauss law condition reduces to

~∇.(e−φ ~B) = 0. (4.7)

We wish to solve the general spike solution using (4.4). In general we may expect a power

series solution for the metric functions which will be given by f(σ̃), where σ̃ refers to the

physical coordinate distance. Note that σ is related to the physical distance via σ̃ = l2sσ.

As in the non-Abelian section we will take f(σ̃) ∼ σ̃n, where n can be positive or negative

but not unity. It will be convenient to switch to spherical coordinates in which case the

magnetic field will only have a radial dependence, and we will take the traditional ansatz

for the field to be

B =
±Q

4πr2
, (4.8)

where Q corresponds to the magnetic charge of the field. Equating both sides of (4.4) gives

us the physical solution for the spike

σ̃n+1 − σ̃n+1
0 ∝ ±Ql2s(n + 1)

4πr
, (4.9)
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where we have neglected a dimensionality factor which makes f(σ̃) dimensionless. With

reference to the general solution on the non-Abelian side (3.16) in physical coordinates we

find

σn+1 − σn+1
0 ∼ ±πNl2s(n + 1)

r
. (4.10)

If we demand that both of these solutions are equal - to leading order in N - we need to

impose the following quantisation condition on the magnetic charge, namely Q = 4π2N .

This condition, with the appropriate choice of sign, ensures that the equations from the

non-Abelian and Abelian theories are the same in an arbitrary background. The n = −1

case, which arises in the fivebrane backgrounds, will give rise to a logarithmic funnel profile

and not the simple power law solution.

In the specific case of the NS5-brane background we find that the spike solution from

the Abelian action, σ̃(r) satisfies the following equation

−1

r
− 4π

√
M

Q

√

σ̃2

l2sM
+ 1 +

2π
√

M

Q
ln





√

σ̃2

l2
s
M

+ 1
√

σ̃2

l2
s
M

− 1



 = c (4.11)

where c is a arbitrary constant of integration. In the throat approximation where σ̃2

l2
s
M

¿ 1

this equation can be solved explicitly for the spike profile

σ̃ = σ̃0 exp

( −Qls

4πr
√

M

)

= σ̃0 exp

(−πlsN√
Mr

)

, (4.12)

More generally the complete solution above in (4.11) can be seen to be exactly equivalent

to the solution for the fuzzy funnel discovered on the non-Abelian side in (3.11) with an

appropriate definition of the constant c in terms of the D3-brane location parameter σ0

and using the quantisation of magnetic charge Q found earlier.

Now in flat space the fact that a spike profile saturates the energy bound is normally

sufficient to argue that such a profile solves the equations of motion. However in the case

where there is a throat present due to the NS5 source branes, this is not the case. From

equation (4.4) with gxx and gzz appropriate to the throat geometry, we can scale σ̃ → lσ̃

and still satisfy this equation. However under the same scaling, the energy of the warped

D3-brane scales like

HD3 → lHD3 (4.13)

and so the energy of the brane can now be reduced by sending l → 0, indicating that

the D3-brane - or funnel solution on the non-Abelian side - will be unstable. This shows

that the static spike profile (4.11) is unstable and wants to decay. Thus by considering a

time-dependent profile rather than static, we can find a solution to the equations of motion.

In general looking for analytic t and r-dependent solutions to the equations of motion

looks very difficult. However assuming the throat approximation, a simple solution, which

describes the motion of the funnel as a whole, can be obtained by using separation of

variables. Such a solution can be expressed as F (t)σ̃(r), where we have introduced a

dimensionless time-dependent profile, F (t) for the spike. It is easy to see that F (t) drops
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out of eq. (4.4) so that σ̃(r) still describes a static spike profile as in eq. (4.12). F (t) is

determined by demanding F (t)σ̃(r) solves the complete equations of motion. We find that

the energy density of the brane reduces to the simple form

E = τ3V3
Fσ̃

√

Ml2s

∣

∣

∣

∣

1 ± λ2

ls

√
M ~B.~∇ ln

(

σ̃

σ̃0

)∣

∣

∣

∣

(

1 − λ2MḞ 2

l2sF
2

)−1/2

, (4.14)

where V3 is the volume element of the D3-brane. Demanding the conservation of energy

(equivalent to solving the equations of motion) we can solve for for F (t), noting that the

absolute value of the second term is independent of time. The solution can be seen to yield

1

F (t)
=

1

F0
cosh

(

tls

λ
√

M

)

, (4.15)

where F0 is the initial condition on the profile. There are two important comments to make

here. Firstly that the solution appears to be valid for any point on the world-volume, even

at the location of the monopole r = 0. Secondly the solution for the profile is exactly the

same functional form as that of a D3-brane with no magnetic flux in the same background,

as shown by Kutasov in ref. [1]. This suggests that the BIon spike will not feel any tidal

forces due to the gravitational attraction of the fivebranes. We may now write the full

solution to the equation of motion (again in the throat approximation) as follows

r(σ, t) =
Nπλls

λ
√

M ln
(

σ̃
σ̃0

[1 + e−tls/
√

Mλ]
)

+ tls + λ
√

M ln(2)
, (4.16)

which we can simplify by considering the solution at late times - and neglecting the con-

stants arising from the initial conditions

r(σ, t) ∼ Nπλls

λ
√

M ln
(

σ
σ0

)

+ tls
(4.17)

which shows that the radion field is proportional to 1/t in this limit. We now want to

consider how this appears on the non-Abelian side, however we note that even when we

include time dependence in the action the equations of motion are highly non trivial and

do not yield a simple analytic solution. We should check that the solution (4.17) is actually

a solution of the theory. We again factorise the scalar field into a time dependent piece

and a spatial piece and make the ansatz

R(σ, t) =
1

2
√

Ml2s ln
(

σ
σ0

)

+ BF (t)
, (4.18)

where B is some arbitrary constant. It can easily be seen that R′ = 2R2
√

H and Ṙ =

BḞR2, where H is the usual harmonic function for the NS5-brane solution. If we substitute

these two equations into the energy density equation for the fuzzy funnel we obtain

H =
τ1V1N(1 + 4λ2CR4)3/2

√

1 + 4λ2CR4 − λ2CB2R4Ḟ 2
, (4.19)

– 26 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
9

which must be conserved in time. This requires that the Ḟ term must vanish from

the expression. The simplest solution is to take Ḟ = 0, however this implies that F

is constant in time and so we are just introducing a constant shift into the equation

of motion. A non-trivial solution can be obtained by setting Ḟ 2B2 = 4, which has

the solution F (t) = 2t/B. This reproduces the same functional form for the equa-

tion of motion as we derived from the Abelian theory, however we need to check the

interpretation of the resultant expression for the energy density, which can be seen to

yield

E → τ1V1N(1 + 4λ2CR4)3/2. (4.20)

Expanding the solution we can see the first term corresponds to the energy density of

N coincident D-strings, as we would expect. The higher order terms correspond to non-

linearities arising from the fuzzy funnel solution representing the warping of the D-strings

in the transverse space. Thus we argue that this ansatz for the equation of motion is

a solution of the theory as we are left with the minimal energy configuration. There-

fore both solutions agree at late times. Furthermore it was argued in [1] that we can

trust the macroscopic description even deep in the IR end of the geometry provided that

the energy of the brane is large enough. Therefore we expect our solution to capture

the vast majority of the evolution of the system. Of course, our analysis is based upon

the fact that we are ignoring the back reaction upon the geometry. Again this requires

fine tuning of the various parameters in the theory to accomplish this. Hopefully us-

ing the prescription for the symmetrised trace at finite N will alleviate this problem en-

tirely.

Similar analyses can be carried out for both the F -string and Dq-brane backgrounds.

The static spike profile in the F -string background, obtained by solving (4.4) is consistent

with the static funnel profile obtained in the same background on the non-Abelian side.

The same scaling argument about such static solutions being unstable, as discussed in the

NS5 case above, is not naively applicable here. What we can verify is that at least in the

static case, the equation for the spike on the Abelian D3-world volume side and the fuzzy

funnel on the non-Abelian side agree.

Finally we discuss the situation for Dq-background geometry with q 6= 3. Here

things are obviously more complicated due to the red-shift of the magnetic field. How-

ever we can use some intuition from our knowledge of the Abelian theory to understand

the physics. It is known that for supersymmetry to be preserved we require the D3-

brane to be embedded in either a D3-brane or D7-brane background [3]. In this case

the funnel solution will be completely solvable. For all other brane backgrounds the su-

persymmetry is broken, and the D3 feels a gravitational potential drawing it toward the

background branes. Thus our static funnel solution will not be compatible with the full

equations of motion, and so we would require a time dependent ansatz. Interestingly in

the D5-brane background we know that open string modes stretching between the fun-

nel and the source branes will become tachyonic at late times, potentially distorting the

funnel.
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5. Higher dimensional fuzzy funnels

We can generalise the non-Abelian results we have obtained to the higher dimensional

theory using the work in [9, 19] as our basis. This means we are considering the fuzzy S2k

spheres, which are labelled by the group structure of SO(2k + 1) in ten dimensions. This

will obviously imply that we require 2k+1 transverse scalars in the DBI action, where k ≤ 3

and the funnels are now blowing up into nD(2k + 1)-branes in an arbitrary background.

Of course the higher number of transverse directions will impose serious constraints upon

the dimensionality of the possible background sources, in many cases we will be left with

unphysical situations such as type IIA, or potentially non braney solutions. The geometry

of these higher dimensional fuzzy spheres is interesting to study in its own right, for example

we know that the fuzzy S6 can be written as a bundle over the classical six-sphere [16]. In

the classical limit we find that the fibre over the sphere belongs to the group SO(6)/U(3),

which implies that constructing a dual picture is non-trivial. The geometrical analysis is

revealing as we can calculate the charge of the branes directly from the base space. The

general topology of our higher dimensional funnel configuration will now be R × S2k, and

we must modify our gauge group ansatz to read

φi = ±RGi, (5.1)

where the Gi matrices satisfy GiGi = Ck1N and lie in the irreducible representation of the

particular gauge group. The Casimir in this case will be labelled by a k index so that we

know which group structure it conforms to. These generators will arise from the action of

gamma matrices on traceless, symmetric n-fold tensor products of spinors [9] and generally

do not form a closed Lie algebra. The relationship between N and n means that the dual

picture is far more complicated. For example in the k = 2 case we know that the D-strings

blow up to form several D5-branes, which have a non-trivial second Chern Class on the

world-volume. This makes the dual picture difficult to analyse and we will not do it in this

note - but see [5, 6] for a more detailed derivation of the D1 − D5 and D1 − D7 solutions

in flat space. The general relationship between the physical distance and the scalar field

ansatz can be written as follows

r = k
√

CkλR, (5.2)

which is similar to the SU(2) case, except there is no ambiguity over the choice of sign, and

we emphasise that the Casimir will be dependent upon the number of higher dimensional

branes in the funnel solution.

The generalisation of the non-Abelian action to leading order is expected to be given

by

S = −τ1

∫

d2σNe−φ
√

g00gzz(1 + λ2Ckgxxg−1
zz R′2)(1 + 4λ2CkR

4g2
xx)k/2, (5.3)

and therefore with our usual rescaling of the tension we can find the spatial component of

the energy momentum tensor

Tσσ =
e−φ√g00gzz(1 + 4λ2CkR

4g2
xx)k/2

√

1 + λ2CkR′2gxxg−1
zz

. (5.4)
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Our work in the lower dimensional case has shown that we can obtain solutions to the

equations of motion, consistent with the energy minimisation principle, when the α term

is constant. If we assume that this is true for our background metric then we can write the

general equation of motion for the funnel as follows

R′2
k =

gzz

λ2Ckgxx

(

(1 + 4λ2CkR
4g2

xx)k − 1
)

. (5.5)

A quick check shows that with k = 1 the solution reduces to R′2
1 = 4R4gxxgzz as expected

from our efforts in the preceding sections. Of course setting α to be constant also imposes

additional constraints on the possible supergravity backgrounds that exist. Interestingly

the higher dimensional solutions will all have a variant of this solution as their lowest order

expansion in λ. The k = 2 and k = 3 solutions can be written as follows

R′2
2 = 8

(

R4gxxgzz + 2λ2C2R
8g3

xxgzz

)

(5.6)

R′2
3 = 12

(

R4gxxgzz + 4λ2C3R
8g3

xxgzz +
16

3
λ4C2

3R12g5
xxgzz

)

which shows that there are apparent recursive properties for these equations. Note that

these expression agree exactly with the ones derived in [5, 6] when taking the flat space

limit, where these results were obtained via minimisation of the energy and found to be

perturbatively stable. Clearly we do not expect this to be the case in a general background

due to the additional σ dependence of the metric components.

In general these equations are difficult to solve, but can in principle be written in terms

of elliptic functions. We will try and make some progress by assuming trivial solutions

for the gxx components which can be absorbed into a redefinition of R, and power law

behaviour for the gzz components. In the k = 2 case we can find approximate solutions to

the equation of motion. In the large R region, the second term is dominant and a quick

integration yields the following solution

R2(σ) =

( ∓1

4λ
√

C2(σm+1 − σm+1
0 )

)1/3

m 6= −1 (5.7)

R2(σ) =

( ∓1

4λ
√

C2 ln(σ/σ0)

)1/3

m = −1.

Note that m = 0 corresponds to the flat space limit and agrees with the solution in [5].

When R is small, the solution is dominated by the leading term and we recover the usual

funnel solution derived in previous sections. Clearly this implies the existence of an inter-

polating region where the solutions cross over from one another. Upon equating the two

terms we find that the cross over occurs at

Rcr ∼
(

1

2λ2C2

)1/4

, (5.8)

which implies, in physical coordinates, that r À ls. Moving on to the k = 3 case, we find

it complicated by the appearance of an extra term. Of course, in the large R limit this
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will be the dominant contribution to the integral and we find a similar solution to the one

sketched out above with the power now being 1/5 rather than 1/3 , and the dependence

on λ and C will also be slightly altered. The crossover in this case will happen at the point

Rcr ∼
(

3

8λ2C3

{

1 +

√

7

3

})1/4

, (5.9)

which will again imply that the physical distance is much larger than the string scale. The

general conclusion here is that higher dimensional fuzzy spheres lead to funnel solutions

which are modified version of the lower dimensional ones, although we ought to bear in

mind that these solutions are potentially only valid in flat space as physical brane sources

satisfying the background constraints may not exist. The general behaviour for the funnel

in the large R limit can be seen to be

R ∼ σ−(m+1)/(2k−1), (5.10)

and so the higher dimensional effects play a more important role as σ → σ0.

We now switch our attention to the leading order 1/N corrections for the general fuzzy

funnel. As usual we choose to work in terms of the variables α, β, γ, where now β is the

general function for arbitrary k. The leading order correction can be calculated to give

H̃1 = αβγ

{

1 − 1

3γCk

(

k(γ2 − 1)(β2/k − 1)

γβ2/k
− (γ2 − 1)2

2γ3
+

kγ(k − 2)(β2/k − 1)2

2β4/k

)}

which clearly reduces to the standard expression when k = 1. This is actually valid for

k = 4 provided we take the flat space limit. Now we see that in general the correction

terms will be non-zero, even if we assume the funnel configuration where β = γ. This is

actually reminiscent of the flat space solutions where the higher dimensional fuzzy funnels

are corrected under the symmetrised trace. Taking k = 2 for example we find that the

corrected energy becomes

H̃1 = αβγ

{

1 − 1

3γC2

(

2(γ2 − 1)(β − 1)

γβ
− (γ2 − 1)2

2γ3

)}

, (5.11)

which implies that the correction terms only vanish for γ2 = 1. The non-trivial solution

to this implies that R′ = 0, or that the radius of the sphere is a constant function of σ.

Furthermore we see that the correction term will always be positive, therefore the higher

order corrections reduce the energy and so we expect the solution to be unstable. It is only

the D1 − D3 funnel which is the lowest energy configuration in an arbitrary background.

6. Discussion

We have further investigated the large N limit of the non-Abelian DBI in curved back-

grounds. As anticipated, the presence of electric flux on the coincident Dp-branes will

never prevent the fuzzy sphere from collapsing toward zero size, however we may expect

quantum effects to become more important as the branes near one another. In the event
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that the field saturates its maximum bound the fuzzy sphere is static, however we should

interpret this as a failure of the non-Abelian action rather than a physical condition.

More importantly, we have investigated the fuzzy funnel solution in the same back-

ground and found a variety of differing behaviour depending on the exact form of the

background metric. For those cases where funnels can exist we constructed the most gen-

eral class of solutions, which were either power law or logarithmic in profile. The non-trivial

facts about this construction can be summarised as follows. By demanding that the strings

expand into a D3-brane in the throat geometry, we have constructed a geometry where a

finite string ends on one side of the brane whilst an infinite string starts from the other

side. However these solutions are apparently related by a σ → 1/σ duality which affects

the energy of the solution. Another interesting property of these solutions is that the

symmetrised trace does not provide corrections to the geometry of the funnel solution,

implying that it is the lowest energy configuration. However, we saw that the solutions to

the equations of motion must be modified to include time-dependence in order to obtain a

complete description of the fuzzy funnel.

We constructed the dual Abelian theory in the same background and found that the

equations of motion for the BIon spike are indeed dual to the fuzzy funnel profile in the

large N limit, provided we impose a certain quantisation condition upon the monopole

charge. This implies that the leading order contributions to the action agree even in a

curved background without requiring modification. Furthermore we see that the same

backgrounds which posed us problems on the non-Abelian side are also non-trivial from

the Abelian side. Again we see that in these situations the funnel/ BIon solutions reduce

to the flat space ones. This implies that the Abelian and non-Abelian actions agree in

the same limit, namely large σ. This behaviour is unexpected as the two descriptions are

usually valid in different regimes.

In addition we looked at the leading order action where there are time dependent

scalar fields, and searched for an extension of the large/small dualities between collapsing

fuzzy spheres and fuzzy funnels [9]. Although the latter configuration can be reached from

the former by Wick rotation, we see that the funnel solution cannot be mapped to the

dynamical one. Instead the funnel solution is invariant under a double Wick rotation,

which appears to be the only automorphism of the equation. Thus the curved background

has broken the symmetries present in flat space.

We extended the fuzzy funnel solutions to higher dimensional fuzzy spheres. Although

this is possible in principle, the physics will depend on the existence of specific stable

backgrounds. The funnel solutions are extensions of the lower dimensional one, which have

different behaviour as the radius of the fuzzy sphere diverges. However the leading order

1/N corrections coming from the symmetrised trace show that these higher dimensional

funnels will be unstable even in the flat space limit.

Having constructed these fuzzy funnels it seems only reasonable to consider their phys-

ical properties, such as electromagnetic scattering, and potential uplifts to M-theory. We

hope to return to these issues in a subsequent paper. There are several puzzling issues to

resolve, which we hope will be the subject of future investigation. The first is related to the

D5-background solution, which appears to force the funnel to open up in flat space. This

– 31 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
9

solution should be related to the NS5-brane solution via S-duality, however it is clear that

the physics of the two solutions are very different. In fact the latter case appears to yield

a nice stable funnel solution which even yields a time dependent profile. A second issue

relates to the breaking of the duality symmetry possessed by the flat space solutions. We

suspect that the background acts to break the general solution symmetry into a connected

and disconnected part. It would be interesting to understand the underlying geometry of

this symmetry in terms of Riemmanian geometry, and how it is related to the symmetrised

trace.

A related issue is the finite N expansion of the action. This has been discussed in [15],

and certainly demands further consideration in the context of our analysis. Moreover

recent work [8] has conjectured a complete expansion of the symmetrised trace, opening

up the possibility of studying all the finite-N effects. This has important consequences

for the microscopical description of the theory, as in this limit we can also neglect back

reaction upon the geometry by considering smaller values of N . The work in this note

implicitly assumed that the back reaction could be neglected by tuning the numbers of

branes appropriately. We should certainly be careful about this kind of assumption, and

certainly only consider our solutions to be leading order approximations. In fact this

could be very useful for describing brane polarisation in warped backgrounds, such as that

proposed by KKLT, as we have the possibility of realising inflation along the lines of [31],

or considering cosmic string networks along the lines of [32]. We leave such work for future

study. Once potential drawback to this is that we may have to modify the finite N action in

these backgrounds along the lines of [29]. Again this is something that needs clarification.

Following on from the recent work in [7] it would be useful to consider perturbative

fluctuations of these funnel solutions especially in light of the apparent relation between

the zero modes of the fluctuations and the moduli space of the fuzzy sphere.
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